Perbandingan Kinerja Algoritma Klasifikasi Dalam Deteksi Spam Email (Studi Kasus Menggunakan Metode Naive Bayes Dan Support vector Machines)

Authors

  • Julbaidah Universitas Budi Darma

Keywords:

Keywords: Data Mining; Comparison; Classification;  Email Spam;  Naïve Bayes;  Support Vector Machines and Rapid Miner

Abstract

This research aims to compare the performance of classification algorithms commonly used in email spam detection, namely the Naive Bayes Method and Support Vector Machines. The main objective of this research is to determine the most effective and efficient algorithm in identifying spam emails. The method used in this research is an experiment using an email data set consisting of emails categorized as spam and non-spam. The data is used to train and test the selected classification algorithm. The performance criteria used in the comparison are accuracy, precision, recall, and F1-score.

The research results show that both classification algorithms provide good performance in email spam detection. However, there are significant differences in the performance of each algorithm. The Naive Bayes method performs well in terms of accuracy, but tends to have lower precision. Support Vector Machines provide balanced performance in all tested performance criteria.

Based on the research results, it can be concluded that in the context of email spam detection, the Support Vector Machines algorithm tends to be the most effective and efficient choice. However, this research also shows that the selection of algorithms must be adjusted to the characteristics of the data used and the desired goals.

Keywords: Data Mining; Comparison; Classification;  Email Spam;  Naïve Bayes;  Support Vector Machines and Rapid Miner

References

S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,” J. Tekno Insentif, vol. 13, no. 1, pp. 16–25, 2019, doi: 10.36787/jti.v13i1.78.

R. H. Yulia Akademi Bina Sarana Informatika Jl RS Fatmawati No, P. Labu, and J. Selatan, “Klasifikasi Spam Email Menggunakan Naïve Bayes,” no. 24, pp. 241– 245, 2019.

S. N. D. Pratiwi and B. S. S. Ulama, “Klasifikasi Email Spam dengan Menggunakan Metode Support Vector Machine dan k-Nearest Neighbor,” J. Sains dan Seni ITS, vol. 5, no. 2, pp. 344–349, 2016.

A. Mubarikah, “Klasifikasi Spam Pada Email Menggunakan Long Short-Term Memory (LSTM) Dan Support Vector Machine (SVM)= Spam Classification In Email Using Long Short …,” 2021, [Online]. Available: http://repository.unhas.ac.id/id/eprint/16532/%0Ahttp://repository.unhas.ac.id/id/ eprint/16532/2/H071171524_skripsI_bab 1-2.pdf

S. B. H. Gmbh, “Definisi Perbandingan,” pp. 1–23, 2016.

F. A. D. Aji Prasetya Wibawa, Muhammad Guntur Aji Purnama, Muhammad Fathony Akbar, “Metode-metode Klasifikasi,” Pros. Semin. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 1, p. 134, 2018.

R. S. Lutfiyani and N. Retnowati, “Implementasi Pendeteksian Spam Email Menggunakan Metode Text Mining Dengan Algoritma Naïve Bayes Dan Decision Tree J48,” J. Komput. dan Inform., vol. 9, no. 2, pp. 244–252, 2021, doi: 10.35508/jicon.v9i2.5304.

D. Widiastuti, J. S. Informasi, and U. Gunadarma, “ANALISA PERBANDINGAN ALGORITMA SVM , NAIVE BAYES , DAN DECISION TREE DALAM MENGKLASIFIKASIKAN SERANGAN ( ATTACKS ),” pp. 1–8, 2007.

I. Winarno, “Klasifikasi Spam Email Dengan Metode Naive Bayes Classifier,” no. January 2010, pp. 0–11, 2016.

R. Sari, “Komparasi Algoritma Support Vector Machine, Naïve Bayes Dan C4.5 untuk Klasifikasi SMS,” IJCIT(Indonesia J. Comput. Infomation Technol., vol. 2, no. 2, pp. 7–13, 2017.

E. Pudjiarti, “Prediksi Spam Email Menggunakan Metode Support Vector Machine Dan Particle Swarm Optimization,” J. Pilar Nusa Mandiri, vol. 12, no. 2, pp. 171–181, 2016, [Online]. Available: http://ejournal.nusamandiri.ac.id/index.php/pilar/article/view/271

M. Hengki and M. Wahyudi, “Klasifikasi Algoritma Naïve Bayes dan SVM Berbasis PSO Dalam Memprediksi Spam Email Pada Hotline-Sapto,” Paradig. -Komput. dan Inform., vol. 22, no. 1, pp. 61–67, 2020, doi: 10.31294/p.v22i1.7842.

P. Algoritma, N. Bayes, and D. A. N. D. Tree, “Perbandingan algoritma naïve bayes , svm, dan decision tree untuk klasifikasi sms spam,” vol. 05, no. 02, pp. 167–174, 2020.

A. D. Wibisono, S. Dadi Rizkiono, and A. Wantoro, “Filtering Spam Email Menggunakan Metode Naive Bayes,” TELEFORTECH J. Telemat. Inf. Technol., vol. 1, no. 1, 2020, doi: 10.33365/tft.v1i1.685.

Downloads

Published

2024-07-23

Issue

Section

Articles